web analytics

Bill Bennett

Menu

Articles

traditional long form content: a post with an explicit title and body

NZ Tech Podcast: New kit, Huawei chip woes, TCF report

I’m back on the NZ Tech Podcast with Paul Spain. We discuss the latest tech news including current geopolitical matters impacting Chinese firms and share thoughts on new devices including the Samsung Note 20 Ultra, Jabra Evolve2 65 bluetooth headset, Jabra Panacast conferencing camera, Microsoft Surface Go 2 – and a prerelease first look at Huawei’s newest laptop; the MateBook 13.

New tech – Samsung, Jabra, Microsoft and Huawei – NZ Tech Podcast

D-Link EXO Mesh DIR-X1560 Wi-fi 6 router

D-Link’s NZ$300 DIR-X1560 is an affordable, basic way to upgrade your home wireless network to Wi-Fi 6.

Chances are you use a router supplied by your internet service provider. That means it will be tried and tested, but uninspiring. Moreover, it’s unlikely the router will support Wi-Fi 6.

There are good reasons to upgrade to Wi-Fi 6, but little need to rush. If you are in a hurry, D-Link’s NZ$300 DIR-X1560 is the obvious choice. At the time of writing the alternatives are expensive high-end devices. These would be overkill in a normal home.

D-link dir-x1560 wireless router

Shiny

The DIR-X1560 is a small shiny plastic box. It has four removable and adjustable antennae. There are four LED indicators on the front. They show power status, the internet connection and two wireless network indicators.

On the back there are four Ethernet ports for the local network. There is an incoming Ethernet port that connects to your fibre terminal and a reset button.

The two wireless network indicators tell you what is going on with the routers two radio bands. Like many domestic routers, the DIR-X1560 can operate on the 2.4Ghz and 5GHz bands. More expensive Wi-Fi 6 routers can add a third 160Mhz waveband.

Gigabit wireless speeds

If you can, you’ll want to use the router on 5GHz as much as possible. It’s faster and less prone to interference. In theory you can get speeds of 1.2 Gbps on 5GHz. That’s faster than a gigabit fibre connection. It will pipe data around your house at a breakneck speed.

That’s the theory. In practice Wi-Fi never delivers theoretical speeds. It’s cheeky of router manufacturers to even mention them. The most I could get from the DIR-X1560 was around 600mbps and that was with a device placed a metre from the router.

Mind you, 600mbps is more than enough for every application you are likely to meet.

DIR-X1560 a basic Wi-Fi 6 upgrade

It says at the top of this story that the DIR-X1560 is a basic way to upgrade your home network. Basic because it lacks features you’d find on high-end wireless routers. Parental controls let you block websites and limit the hours your little darlings spend online. There is nothing in the way of malware protection.

Compared with other routers, it is a limited web console. You might view this as restricting your options for tinkering. Or you might see it as less scope to screw things.

You can see the cable and network status. There are all the address numbers. The console will show the number of connected clients. If you wish you can disconnect them. One feature I enjoyed was having a Speedtest run from the router itself. All routers should do this.

Web console

As the screen shot shows, D-Link’s web console struggles with Apple’s Safari browser. The second version shows the same page on Firefox. There’s a neat control that lets you prioritise devices. That way Mum’s home office computer can have priority over junior’s Fortnite session. You can protect bandwidth for work Zoom calls.

Away from the web console, you can manage the DIR-X1560 with a phone app. It is cruder and less comprehensive than the console, but you get the important controls.

And if that isn’t enough, a handful of controls work with Alexa or Google voice commands, if that is your thing. This can be useful if you need to reboot in a hurry.

At this point I should write about installing the router. but I ran into an authentication problem with my ISP that meant I took days to get everything working. It didn’t look like an authentication problem and I didn’t solve it until I called D-link’s support.

DIR-X1560 sterling performance

Compared with the ISP provided Wi-Fi 5 router it replaced the DIR-X1560 did a sterling job. I’m going to stick with this review product.

My testing process was simple enough. I ran Speedtest five times using my ISP provided Wi-Fi 5 router from the desktop iMac. The iMac supports Wi-Fi 5, not Wi-fi 6. Then I did the same again on an iPad Pro located next to the desktop. For the third set of tests I moved the iPad Pro to about 1 metre from the router.

The desktop is about three metres from the router, but the other side of a corridor. There are two walls in the way.

Then I did the same tests using the DIR-X1560 router. In both cases I made sure my devices weren’t running backups or other hidden web applications. I didn’t check to see if Johanna was using her computer, phone or iPad. After all, part of the reason for upgrading to Wi-Fi 6 is to improve throughput when you connect lots of devices.

To keep this simple, I averaged each set of five measurements. This is indicative, not scientific.

 DIR-X1560Wi-Fi 5 ISP supplied router
IMac653 down / 296 up488 down / 417 up
iPad Pro 655 down / 446 up320 down / 267 up

Band choices

Other Wi-Fi routers can allow client devices to choose a 2.4GHz or 5GHz connection.1.

With the DIR-X1560 you can make that decision from the console, not from the device. During testing I found a huge difference in performance between the two wave bands. The difference is larger than you might expect when looking at theoretical top speeds.

None of my devices could get much above 80mbps on 2.4GHz.

I benchmarked everything against an old ISP supplied Wi-Fi 5 router. This beats the DIR-X1560 by miles on 2.4GHz performance. It can reach as high as 200mbps. But the 5GHz is the one that matters.

The old router managed a strong signal in the home office, which is three metres and two walls away. It remains strong in the upstairs bedrooms that are five and seven metres and three or more walls away from the router. Beyond that the signal strength drops fast.

When I compared this with the DIR-X1560, it’s long distance performance was better on both 5GHz and 2.4GHz. In other words, the router has an extended reach. I don’t have the hardware to perform a better test of this, but my suck-it-and-see approach was clear enough for this house. Your mileage may differ.

DIR-X1560 verdict

If you want to get a Wi-Fi 6 network running today, the D-Link EXO Mesh AX1500 Wi-Fi 6 Router (DIR-X1560) is a solid choice. Its 2.4GHz performance is poor, but that’s not always important for everyone. You can get more features and a fancier web console elsewhere. Yet unless you have specialist wireless network needs, the DIR-X1560 ticks all the boxes.


  1. To make life confusing, this is sometimes called 5G Wi-Fi. ↩︎

Wi-Fi 6 — a better way to do wireless

Fibre to the home can be fast. It’s like a six-lane motorway with no speed limit. Yet once that turbo-charged data traffic hits the home, it can slow to a pedestrian crawl.

That’s because home networks tend to use wireless technology. Wi-Fi, the brand name for wireless networking, distributes data in almost every New Zealand home.

Fixed line Ethernet is the faster option. Use it where you can to improve data speeds. You should, at least, connect your TV to your router using an Ethernet cable. That way you won’t get Wi-fi hiccups in the middle of the big match or a Netflix movie.

Cables versus wireless

Beyond that, it’s down to how much you need all that gigabit fibre speed. Stringing cables around the place is expensive. It can be bothersome. Using wireless is far easier, even if it is slow and suffers from congestion.

There is a lot you can do about these negatives. The most obvious and, in the long term, the best option is to move to Wi-Fi 6. It is the most modern version of wireless network technology.

Wi-Fi 6 can be faster than older Wi-fi, although you may not always notice much of a speed bump1. The more important thing about Wi-Fi 6 is that it works better when you have many connected devices.

And it’s likely you do.

Wi-Fi 6 eases data congestion

The average home has around 20 internet connected devices. Switched on devices will attempt to communicate with your router all the time.

The technical term for this is congestion. Unlike a lot of network jargon, it doesn’t need explaining.

When lots of people use the same Wi-Fi router at the same time, you have a data bottleneck.

The technical name for Wi-Fi 6 is 802.11ax. When the Wi-Fi Alliance updated home wireless technology in the past the focus was on speed improvements.

Greater capacity

Wi-Fi 6 does this. But more important it increases capacity and improves power efficiency. It will perform better when there are many devices.

The speed improvement is significant. In theory a router can push data through the air at 1.2Gbps. This compares with 800mbps on the earlier Wi-Fi standard.

In practice you will never see those speeds.

There are all kinds of gotchas slowing connections. The big one is that everything on the network shares the bandwidth. Your neighbours’s Wi-Fi can interfere and slow yours if you are unlucky2. Wireless data will slow down going through walls. There are other factors beyond the scope of this post.

The key thing is that you should see faster Wi-Fi 6 connections: 30 percent faster than old school Wi-Fi. You’re going to need that extra speed if you have a gigabit fibre connection.

Capacity boost from Wi-Fi 6

More speed is great. Yet the increased capacity is every better. You don’t need to know the technology behind this, but if you have a spare week, go and research Orthogonal Frequency Division Multi Access.

In effect this splits radio channels into smaller chunks, then sends simultaneous blocks of data through them.

Doing things this way has an interesting by-product: lower latency. This is the time it takes for a signal to do a round trip from, say, your laptop, to and from a server. Wireless latency, think of mobile data, tends to be far higher than with fixed networks.

Latency

Latency is one of those measurements where lower means better.

Lower latency is great for gamers. With a high latency connection your game rival can take a shot at you before you see them.

With lower latency you should see less lag when chatting to others on, say, a Zoom video conference. There are times when this can be a problem, although in the bigger scheme of things, it’s not essential.

Power efficiency

The greater power efficiency in Wi-Fi means battery powered devices will run longer between charges. Again, it’s not a huge improvement when you look at a single household. Yet when millions of homes save a small amount of power we burn less fuel.

There’s another aspect of battery life that might not be of interest right now, but could be in the future. It means that small Internet-of-things devices can go years without needing a charge. This technology is now turning up in domestic products and may soon be useful.

One last advantage of Wi-Fi 6 is that it has better security than earlier versions. It has WPA3 which makes it harder for intruders to run a password guessing attack. You can never be secure enough.

Wi-Fi 6 catches

There is a catch. You’ll need more than a new router. Wi-Fi 6 needs a hardware upgrade. You won’t be able to go to a website and download a software upgrade that lets your existing devices use it.

Almost every new device now comes with Wi-Fi 6. Hardware you purchased in the last year may have it. You’ll need to check.

In other words you may not see much benefit upgrading your router until you buy other hardware. My phone and iPad Pro have Wi-Fi 6, but my desktop computer does not.

The other catch is that your service provider might not offer Wi-Fi 6 routers. Few do. The hardware is more expensive than older Wi-Fi routers. If you buy your own expect to pay more than $200.


  1. Mainly because you need new hardware to get the benefit. The story explains this later. ↩︎
  2. Although there are things you can do to reduce this problem ↩︎

Wireless charging:  Inefficient, bad for the planet

Wireless charging feels modern. But don’t let clever looking technology fool you. It doesn’t always work as well as promised and it could be terrible for the environment.

“…the slight convenience of juicing up your phone by plopping it onto a pad rather than plugging it in comes with a surprisingly robust environmental cost.

According to new calculations from OneZero and iFixit, wireless charging is drastically less efficient than charging with a cord, so much so that the widespread adoption of this technology could necessitate the construction of dozens of new power plants around the world.”

Source: Here’s Exactly How Inefficient Wireless Charging Is | Eric Ravenscraft | OneZero

Nokia claimed to have the world’s first wireless phone charging in 2012 with the Nokia Lumia 920.

At the time Nokia said its wireless charging was 90 percent efficient. That means the charger wasted 10 percent of energy, turning it into heat.

This doesn’t square with Eric Ravenscraft’s story at OneZero. He says:

“Charging the phone from completely dead to 100 percent using a cable took an average of 14.26 watt-hours (Wh). Using a wireless charger took, on average, 21.01 Wh.

That comes out to slightly more than 47 percent more energy for the convenience of not plugging in a cable. In other words, the phone had to work harder, generate more heat, and suck up more energy when wirelessly charging to fill the same size battery.”

Ravenscraft found how he positions the phone on the charging mat makes a huge difference. And he found it hard to line things up to get the best results.

Wireless charging hit and miss

Wireless charging can be hit and miss. There are mornings when I pick up my phone and discover that it didn’t charge overnight.

The phone only has to move a millimetre or two for that to happen. It is so sensitive that I can open a desk drawer or type on my keyboard and the phone moves away from a charging position.

In his story Ravenscraft reveals a wireless charger consumes a small amount of power when it isn’t charging a device.

All up, wireless chargers waste a lot of power. It may only be a tiny amount per person, per charger, but multiplied by millions of users around the world it adds up to environmental damage.

In my earlier story, I noted that wireless charging is handy, but plugging in a cable is hardly a big deal. You get almost no advantage for what, in aggregate, is a big environmental cost.

Toshiba calls it a day: Sayounara

Toshiba portegeAt The Register Simon Sharwood writes: Toshiba has finally and formally exited the laptop business.

The Japanese computer maker had a long run. It made its first laptop in 1985. As Sharwood says:

Toshiba “…claims to have been the first to make a mass-market computer in the now-familiar clamshell form factor. By the 1990s the company was producing solid workhorses in the Satellite range and started to make meaningful stretches of mobile work possible with the small, thin and light Portégé range.”

It’s no accident that the first tiny, portable computers came from Japan. In the 1960s and 1970s country was ahead of the world when it came to miniaturisation. This is the culture that introduced the world to the Sony Walkman.

Space saving Toshiba

There’s another reason laptops took off early in Japan. They take up less room. Japanese homes and offices have far less space than elsewhere in the world. Even senior managers would have small desks. A desktop computer, which in those days meant a large and heavy CRT display along with a hefty main box, wouldn’t leave much space for anything else.

Toshiba enjoyed an early success in New Zealand. For years it was one of the top five PC brands. In September, 1993 I interviewed an IDC analyst who told me Toshiba was a leading brand here because its products “allowed executives to take work home with them”. The NBR published this story.

For year I bought Toshiba laptops. For myself and for family members. In their day they were great, but as Sharwood reminds me in his story:

“As the 2000s rolled along Toshiba devices became bland in comparison to the always-impressive ThinkPad and the MacBook Air, while Dell and HP also improved. Toshiba also never really tried to capture consumers’ imaginations, which didn’t help growth.”

Toshiba’s fortunes waned. Japan’s followed. The country was never more than a bit player in the PC business after that. NEC faded from sight, at least in New Zealand. The last I heard of Toshiba was six years ago.

Sharp picked up the Toshiba brand two years ago. By then Japan’s remaining visible laptop maker, as far as New Zealand is concerned, was Panasonic with its range of hardened Toughbook models.